
NanoLeak : A Fast Analytical Green’s Function-based

Leakage-aware Thermal Simulator

Anjali Agrawal
Dept. of Electrical Engineering

IIT Delhi, India
Email: anjaliagrawal3298@gmail.com

Smruti R. Sarangi
Computer Science and Engineering

IIT Delhi, India
Email: srsarangi@cse.iitd.ac.in

Abstract— In this paper, we propose NanoLeak,

a comprehensive temperature simulator that incor-

porates both classical heat transfer mechanisms and

nanoscale effects. It performs both steady state and

transient analyses while automatically taking leakage

into account. We derive closed-form expressions for

the Green’s function (impulse response of a power

source) for all scenarios with leakage; there is no need

for the traditional, time-consuming iterative solutions.

We show a speedup of 1250X for the classical heat

transfer case (Fourier’s heat equation) with an error

limited to 2.4% in computing the steady-state thermal

profile. At nanoscale levels, the Boltzmann transport

equation (BTE) is solved to analyze the temperature

profile. In this paper, we analytically compute the

leakage-aware solution for the gray-BTE model and

compare the results against competing, state-of-the-

art work (211-2580X speedup).

Keywords— Temperature modeling, Green’s func-

tion, Nanoscale effects

I. Introduction

It is widely accepted that temperature is a first-order
design criterion in the design of processors. Temperature
simulation is done at various stages of the design flow, al-
beit with different amounts of information. For example,
designers get a rough idea of the final temperature at the
architecture design or floorplanning stage itself such that
high-level decisions can be made and the broad contours
of the cooling solution can be worked out. Temperature
estimation is later done after the design is synthesized to
get an even more accurate idea of the final thermal profile
of the chip. This helps tune different power management
mechanisms. Given that there is a leakage-temperature
feedback loop, temperature hotspots further exacerbate
the problem and have a detrimental effect on the ultimate
reliability of the chip.
The area of temperature estimation methods for pro-

cessors is very well-established. Typically, using classical
techniques such as finite element (FEM) or finite differ-
ence (FDM) approaches is very slow. It is often necessary
to run thousands of temperature simulations [1,2]; conse-
quently, fast simulation times with low error become nec-

essary. As a result, Green’s function-based approaches [3]
have achieved prominence in the last few years. A Green’s
function is defined as the impulse response of a unit power
source, and computing the temperature profile is as sim-
ple as convolving the power profile with the Green’s func-
tions (with some corrections at the edges and corners).
Such approaches are several orders of magnitude faster
than competing approaches that are derived from finite
difference based approaches [4].

Unfortunately, for modern sub-10 nm technologies,
solving traditional heat equations (Fourier equations) is
not enough. We need to take nanoscale effects such as
phonon transport as well [5, 6], particularly as the tech-
nology node starts to reduce beyond the mean free path
of phonons (beyond 45nm). We need to solve the gray-
BTE equation [7] to compute the temperature profile of
such devices. Most existing thermal simulators [1,2,8] do
not take this into account, leading to an error of 25-60%
in temperature estimation [5, 6, 9].

A recent paper by Varshney et al. [9] titled Nanotherm
has addressed this issue and proposed a Green’s function-
based approach for solving both the classical Fourier’s
heat equation and the gray-BTE equation. In their pa-
per, the authors report a substantial speedup over existing
FEM-based approaches. However, this paper is incom-
plete in the sense that the authors do not model leakage
power or the leakage-temperature feedback loop. Partic-
ularly, when we consider phonon transport mechanisms
computing leakage power is of paramount importance.
The increased temperature does manifest in greater lo-
calized leakage power, and this needs to be modeled and
aggregated. To use the Nanotherm model for modeling
leakage power, it is necessary to run the model once, up-
date the temperature, compute the leakage power, run it
once again, and so on, until convergence. This is a time-
taking, iterative process and in our experiments at least
4-5 iterations were required. Again, the temperature does
not converge at all points; there are always a few points
that demand more iterations.

We adopt a more direct approach in this paper, where
we bring in leakage directly into the analytical expres-
sion of the Green’s function. We start with the equations



TABLE I
Comparison of thermal simulators

Simulator Fourier
Leakage
aware
Fourier

BTE
Leakage
aware
BTE

COMSOL ✓ ✗ ✗ ✗

ThermalScope ✓ ✗ ✓ ✗

HotSpot [1] ✓ ✗ ✗ ✗

3DICE [2] ✓ ✗ ✗ ✗

NanoTherm [9] ✓ ✗ ✓ ✗

NanoLeak ✓ ✓ ✓ ✓

proposed in NanoTherm and then extend them to auto-
matically incorporate the effects of leakage. This is not a
simple extension, and it turned out to be quite non-trivial.
The advantage is that for both classical thermal analyses
(Fourier’s equations) and analyses based on the gray-BTE
equation, there is no need to go for a tedious, iterative
process. We can directly use the modified equations and
then convergence at all the points is guaranteed. There is
a direct speedup in terms of the computational time vis-a-
vis NanoTherm and we also avoid the numerical precision
issues that typically bedevil such approaches that rely on
convergence. The theoretical techniques presented in this
paper can possibly be used in other problems of a similar
nature. Table I summarizes the design space.
We discuss the relevant background in Section II. Next

we present our methodology in Section III. We finally pro-
ceed to discuss the evaluation in Section IV and conclude
in Section V.

II. Background

A. Fourier’s Heat Equation

Heat transfer in solids is governed by the Fourier’s heat
equation (Equation 1). This equation is valid for cases
where the geometry of the device is much larger than the
mean free path of phonons. It does not model the quan-
tum effects prevalent in nanoscale devices.

ρc
∂T

∂t
− k∇2T = qvol (1)

Here, ρ is the density, c is the specific heat, k is the ther-
mal conductivity, qvol is the volumetric heat, T is the tem-
perature profile and t is the time. Equation 1 is solved
using FEM/FDM based methods [1, 8] or using Green’s
function-based methods [3].

B. Boltzmann Transport Equation

Phonons, which are quantized lattice vibrations, play a
crucial role in determining the temperature distribution
at the nanometer scale. They exhibit wave-particle dual-
ity. In nanoscale devices, the mean free path of phonons
becomes comparable with the dimensions of the devices
under consideration [6]. In such cases, the wave nature of
phonons cannot be neglected. Hence, the Fourier’s heat
equation fails. To model the phonon effects, we solve the

Boltzmann transport equation(BTE) [10]. Typically, we
solve this equation by taking the Gray approximation,
which assumes that all the phonons are grouped at the
same frequency node with the same group velocity and
relaxation time. It is a widely accepted model (refer to
Equation 2).

∂eω
∂t

+−→vg · ∇eω − Q

4π
=

(
∂eω
∂t

)
collision

(2)

where eω is the energy density per unit solid angle, −→vg is
the group velocity of phonons, t is the time, and Q is the
volumetric heat generation. The RHS term models the
phonon scattering.

C. Leakage power

The leakage power is exponentially dependent on tem-
perature and can be modeled using the simplified BSIM4
equation [11] given by Equation 3.

Pleak = v2T ∗ e
VGS−vth−voff

ηvT (1− e
−VDS

vT ) (3)

Here, vT is the thermal voltage, vth is the threshold volt-
age, voff is the offset voltage in the sub-threshold re-
gion and η is a constant. Experiments done in [12, 13]
have shown that over the operating temperature range of
ICs, the leakage power can be assumed to be linearly de-
pendent on temperature. Also, in [14], the authors have
shown that the linear leakage model provides an accuracy
of over 96%, which is sufficient for the early design and
architectural exploration stages. Hence, we simplified lin-
ear model to calculate the leakage power. This approach
has been used in other works as well [15, 16].

D. Green’s Function

The Green’s function is defined as the impulse response
of a unit power source (Dirac delta function) applied to
the center of the chip. During the pre-compute stage, the
Green’s function is computed and stored. It is then used
to quickly compute the temperature profile of the chip at
runtime.

T = G ⋆ P (4)

where, G is the Green’s function, P is the power profile
of the chip, and ⋆ is the convolution operator. Green’s
function based methods are significantly faster compared
to conventional FEM/FDM based approaches [3, 4].

E. Hankel Transform

For a radially symmetric function, a 2D Fourier trans-
form is analogous to a zero-order 1D Hankel transform.

H(σ) = H(f(r)) =

∫ ∞

0

rf(r)J0(σr)dr (5)

where, H is the Hankel operator, J0 is the zero-order
Bessel function of the first kind, r is in the polar co-
ordinates and σ is the Hankel variable.



TABLE II
Glossary

Symbol Meaning

ϕs Analytical Green’s function
q0 Volumetric heat source
r0 Radius of the heat source
k1 Thermal conductivity of the chip
J1 Bessel function of the first kind
σ Hankel domain variable
z Position in the z direction
b Thickness of the heat spreader
δ Thickness of the silicon die
T Transient leakage-aware temperature profile

III. Methodology

A. Fourier Analysis

The Fourier’s heat equation given by Equation 1 is
solved to obtain the Green’s function of a chip. This can
be done either using FEM/FDM or by using analytical
methods (as done in [9]).
1. Steady State
The calculated Green’s function without considering

the effects of leakage in the Hankel domain is given by [9],

ϕs(σ, z) =
q0r0
k1

J1(r0σ)

σ2

1

1− f(σ)
(e−σz + f(σ)eσz) (6)

where,

f(σ) = e−2σδ k1tanh(bσ − k2)

k1tanh(bσ + k2)
(7)

Table II describes the relevant parameters.

Let us consider the two components of power: the dy-
namic power Pdyn and the leakage power Pleak. From
Equation 4, the complete temperature profile of the chip
is thus given by,

T = fs ∗ (Pdyn +∆Pleak) (8)

where, fs is the Green’s function without leakage.
In our analysis, we consider a linear model for leakage,
which is given by Equation 9

∆Pleak = βT (9)

where, β is a constant depending on the properties of
the chip. It is given by β = dPleak

dT . Hence, Equation 8
becomes,

T = fs ∗ Pdyn + β(fs ∗ T ) (10)

Next, we take the 2D Fourier Transform on both sides.
To simplify our analysis, we use the Hankel transform.
The Hankel transform of a 2D function is equal to the
product of the transforms scaled by the factor of 2π. Tak-
ing the Hankel transform, we get

H(T ) = H(fs) + 2πβH(fs)H(T ) (11)

H(fs) is the analytically computed Green’s function ϕs.
Taking H(T ) to the LHS, we get the leakage-aware steady
state Green’s function,

H(T ) =
ϕs

1− 2πβϕs
(12)

2. Transient Analysis
To incorporate the effect of variations in the tempera-

ture profile with time, we add a capacitive term to the
steady state equation [16]; the resultant equation be-
comes,

T = fs + βfs ∗ T − Cfs
dT
dt

(13)

By following the same steps as we followed to derive
the steady state response, together with the condition
2πβH(fs) ≪ 1, we get

H(T ) = H(fs)(1+2πβH(fs))−2πCH(fs)H
(
dT
dt

)
(1+2πβH(fs))

(14)

The first term in Equation 14 can be approximated as the
steady state leakage aware Green’s function ϕsleak. Let
fα = 2πC(1 + 2πβH(fs)). Equation 14 reduces to

H(T ) = ϕsleak − fαH(fs)H
(
dT
dt

)
(15)

This is a first order linear differential equation. Applying
the boundary condition H(T )|t=0 = 0 and solving, we get

H(T ) = ϕsleak − ϕsleake
−t

fαH(fs) (16)

Let us compute the inverse Hankel transform of Equation
16. The first term is the steady state temperature profile
Tss. Let the second term be finv.

T = Tss − finv (17)

Let us separate finv into two parts: finvϵ0 and finv∞ϵ .
finv∞ϵ is the value of finv between ϵ and ∞. It is thus
given by,

finv∞ϵ =

∫ ∞

ϵ

ϕsleake
−t

2πCϕsleak J0(σr)σdσ (18)

finvϵ0 is the value of finv between 0 and ϵ. When ϵ → 0,
σr = 0, and J0(σr) = 1. When σ → ϵ, fα = f0 =
2πC(1 + 2πβH(fs)|σ=0.

Also, since δ(σ)
σ ≫ βT , we can ignore the leakage terms

present in ϕsleak. Hence, we can approximate H(Tss) =

H(fs) = H(fs)|σ=0
δ(σ)
σ . Thus, finvϵ0 becomes

finvϵ0 =

∫ ϵ

0

H(fs)|σ=0
δ(σ)

σ
e

−t

f0H(fs)|σ=0
δ(σ)
σ σdσ (19)

finvϵ0 =
(H(fs)|σ=0)

2f0
ϵ2t

(1− e
−tϵ2

f0H(fs)|σ=0 ) (20)

The transient leakage-aware temperature profile be-
comes

T = Tss − finvϵ0 − finv∞ϵ (21)



TABLE III
Glossary

Symbol Meaning

Q Volumetric heat generation

τ Phonon relaxation time

Λ Mean free path

ξx,ξy,ξz Spatial frequency in the x,y, and z directions

C Specific heat

fsp gray-BTE solution

F Fourier transform

η Temporal frequency

B. BTE Analysis

The gray-BTE equation is analytically solved in [9] to
obtain the Green’s function. We modify it to incorporate
leakage.
1. Steady State
The Green’s function for the steady state gray BTE is

as follows.

F(fsp) =
Q̃τ

C

1
Λξ tan

−1(Λξ)

1− 1
Λξ tan

−1(Λξ)
(22)

Table III describes the relevant parameters. The temper-
ature field U of the device considering leakage is given
by

U = fsp ⋆ (Pdyn +∆Pleak) (23)

where, ξ=
√

ξ2x + ξ2y + ξ2x. Considering a linear leakage

model, ∆Pleak = βU and Pdyn as the Dirac delta function
(a point source with 1 W power), we get

U = fsp + βfsp ⋆ U (24)

Computing the 2D fourier transform of the LHS and RHS
and rearranging the terms, we get the steady state Green’s
function considering leakage in the Fourier transform do-
main

F(U) = F(fsp)

1− βF(fsp)
(25)

where, X̃ stands for the Fourier transform of variable X.
Putting the value of ∆T̃ in Equation 25 and solving it we
get the leakage-aware steady state Green’s function for
the gray-BTE model.

F(U) = Q̃τ

C

1
Λξ tan

−1(Λξ)

1− 1
Λξ tan

−1(Λξ)(1 + β Q̃τ
C )

(26)

2. Transient Analysis
The transient Green’s function for gray BTE without

considering leakage (as calculated in [9]) is given by Equa-
tion 27.

F(fsp) =
Q̃τ

C

1
Λξ tan

−1
(

Λξ
1+iητ

)
1− 1

Λξ tan
−1

(
Λξ

1+iητ

) (27)

Following a similar procedure, we get the transient
leakage-aware Green’s function to be as follows.

F(U) = Q̃τ

C

1
Λξ tan

−1
(

Λξ
1+iητ

)
1− 1

Λξ tan
−1

(
Λξ

1+iητ

)
(1 + β Q̃τ

C )
(28)

IV. Evaluation

A. Setup

We ran the Fourier simulations on an Intel i3 laptop
with 4GB RAM running Windows 10. The BTE simula-
tions were run on an Intel i7 desktop with 12GB RAM
running Ubuntu 16.01 LTS. We used the commercial CFD
simulator COMSOL(version 5.5) to validate the Fourier
results. For BTE validation, we used the FEM-based
ThermalScope (ISAC2) tool. The Fourier analysis scripts
were written in R 3.6.1 and the BTE scripts were written
in MATLAB2020b. All our results take leakage into
account.

B. Fourier Analysis

For the Fourier analysis, we consider a 11.2 mm × 11.2
mm × 0.15 mm chip with a 11.2 mm × 11.2 mm ×
3.52 mm heat spreader placed on top of it. The ther-
mal conductivity of the chip and the heat spreader are
taken to be 150 W/mK and 256 W/mK, respectively. To
compute the Green’s function, we need a circular power
source at the center of the chip. But we can simulate
only rectangular/square elements in a real chip. Hence,
we mapped square sources to circular sources as suggested
in [9]. Next, we discretize the chip into 0.2 mm × 0.2 mm
blocks, which was found to be sufficient in other works as
well [9]. The percentage errors reported for Fourier anal-
ysis are with respect to the maximum temperature rise.
1. Steady State Analysis
We compare the Fourier steady-state Green’s function

as per our results versus COMSOL in Figure 1. The er-
ror in computing the maximum temperature rise was ob-
served to be 2.4 %. Our system takes a total time of 1.22
s to compute the Green’s function for a 11.2 mm × 11.2
mm chip. To compute the Green’s function, we build the
same model configuration in COMSOL with a 0.2 mm ×
0.2mm heat source at the center. To compute the leakage
aware temperature profile in COMSOL, we run the ther-
mal simulation multiple times till the leakage power and
temperature values converge; this takes approximately 25
min. We thus achieve a speedup of 1250X over a com-
mercial CFD simulator.
2. Transient Analysis
We run the transient Fourier simulation for the same

setup as before. Figure 2 shows the step response for
100 radial points and 100 time steps. This takes approxi-
mately 2.24 min. The total runtime of our algorithm for
one time step is 1.62 s, as compared to 45 min (speedup
of 1670X) taken by COMSOL, with the error limited to



2 %.
Full-chip thermal profile: We also compute the full-chip
(Intel Gainestown) temperature profile (same setup as [9])
using our algorithm for both the steady state and tran-
sient case, respectively. We show the simulation results
for only one test case due to space constraints. In Fig-
ure 4, we show the transient full-chip thermal profile for
a random power map at time steps of 1 ms, 5 ms, and 10
ms, respectively. This takes approximately 1.62 s.

C. BTE Analysis

We compare the leakage-aware BTE solution against
the state-of-the-art tool ThermalScope for a 60 nm × 45
nm × 20 nm channel FET [5, 6]. The values of vari-
ous constants in the BTE equation are taken from Ther-
malScope.

1. Steady State Analysis

We run the steady-state BTE simulation for the device
configuration described above. We observe a simulation
time of 4.3 s for 400 × 400 × 200 grid points. Next,
we run ThermalScope for 60 × 60 × 48 grid points. For
leakage-aware analysis in ThermalScope, we need to per-
form the simulation multiple times till the leakage power
and temperature values converge. This takes approxi-
mately 185 min. Hence, we achieve a speedup of 2580X
over ThermalScope with an RMS error of 0.05 ◦C. Note
that NanoLeak considers far more points (400 × 400 ×
200) as compared to ThermalScope. Figure 5 shows the
comparison of ThermalScope with NanoLeak for steady
state simulation.

Fig. 1. Comparison of Fourier steady state simulation results with
COMSOL

Fig. 2. Comparison of Fourier transient simulation results with
COMSOL

Fig. 3. Comparison of ThermalScope with NanoLeak for BTE
transient simulation

2. Transient Analysis

We run a transient simulation for the same configura-
tion. We observe a simulation time of 68 s for 200 time
steps. Next, we run ThermalScope for 60 × 60 × 48 grid
points; the total simulation time was 244 min (speedup
of 211X). The RMS error, in this case, was 0.053 ◦C (see
Figure 3).

D. Simulation Speed

Table IV summarizes the time taken to compute the
Green’s function for various commercial thermal simula-
tors and our approach NanoLeak. Our algorithm is 1250
times faster in computing the steady state Fourier solu-
tion as compared to COMSOL. For transient simulation,
we show a speedup of 1670X. We are 2580 times faster
than ThermalScope in computing the steady state BTE
solution, and 211 times faster in calculating the transient
solution. We also compare our algorithm against Nan-
otherm. It typically takes 4-5 iterations for computing
the leakage-converged thermal profile, but it faces con-
vergence issues, especially for the BTE simulations. Nan-
oTherm is faster for the Fourier steady-state case because
they use an approximation in their code (omit computing
a term), which we cannot use.

V. Conclusion

In this paper, we proposed an ultra-fast thermal sim-
ulator NanoLeak that takes both the leakage effects and
nanometer-scale level effects into account. As compared
to the commercial CFD simulator COMSOL, we observe
a speedup of 1250X in computing the Fourier steady state
Green’s function with the error being 2.4 % and a speedup
of 1670X with an error less than 2 % for transient simu-
lation. We also compare the leakage-aware BTE solution
with the state-of-the-art tool ThermalScope. We achieve

TABLE IV
Speed of thermal simulators

Simulator
Fourier heat eq. BTE

Steady Transient Steady Transient

COMSOL 1500 s 2880 s - -

ThermalScope - - 185 min 240 min

NanoTherm 0.415 s 16.8 s 16.5 s 158 s

NanoLeak 1.22 s 1.62 s 4.3 s 68 s



(a) Power distribution (b) ∆T at 1ms (c) ∆T at 5ms (d) ∆T at 10ms

Fig. 4. Transient full-chip thermal profile (Intel Gainestown die, refer to [9])

(a) Along x axis (b) Along y axis (c) Along z axis

Fig. 5. Comparison of ThermalScope with NanoLeak for BTE steady state simulation

a speedup of 2580 times with an RMS error of 0.5 ◦C. For
transient simulation, we achieve a speedup of 211X with
an RMS error of 0.0527 ◦C.
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